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We study the analytical structure of corrections to perfect adiabatic evolution associated with an en-
semble of classical ergodic Hamiltonians with specific correlation properties, distributed at inital time,
e.g., over a single energy shell. In particular, we aim to check the prediction of the multiple-time-scale
method concerning the structure of energy moments that measure the extent of violation of an ergodic
adiabatic invariant when the slowness parameter is small but finite. Solving exactly for the evolution of
the phase space density, we find the explicit form of the energy moments for an infinite one-dimensional
system of harmonic oscillators with time-decaying couplings. A comparison with the multiple-time-
scale method shows its restricted applicability to a marginal limit of a vanishing slow time scale.

PACS number(s): 05.45.+b, 03.20.+i

I. INTRODUCTION

Complex systems ordinarily proceed on multiple time
scales. Prototypically, one distinguishes between fast
motions, and slow motions that serve as the environment
for the former. The fast variables are thus subject to adi-
abatic time-varying forces, and a perennial problem in
the ensemble format that we will adhere to is that of
describing the resulting quasistatic propagation of the
fast variable distribution.

The general adiabatic process is defined as follows: We
assume that the time evolution of a dynamical system is
governed by a time-dependent Hamiltonian of the scaling
form H(z,t)=h(z,7), where z denotes a point in phase
space (it will be mostly omitted as a functional argument),
and 7=et defines, besides a fast time scale over which ¢
changes by order unity, a slow time scale determined by
the dimensionless slowness parameter €. For an ideal adi-
abatic process, ? is regarded as arbitrarily large (1 — « ), €
arbitrarily small (e—0), maintaining the finite value of 7.
The corresponding time evolution is, in principle, now
well understood for ergodic systems, due to the existence
of specific adiabatic invariants [1,2]. For a process which
is not perfectly adiabatic, the slow time scale 7 is still
considered to be finite, while the slowness parameter € is
small but finite, and one attempts to find the € expansion
of adiabatic invariants. The analytic character of the
leading-order € corrections, which remains a puzzle in
many aspects, then tells us about the “goodness” of these
invariants when applied to a realistic time-dependent pro-
cess where € is never negligibly small.

It turns out that the treatment of € corrections to the
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perfectly adiabatic evolution depends very much on the
fast time ¢ asymptotics of correlations among dynamical
variables induced by the instantaneous (or frozen) Hamil-
tonian h(z,7), with 7 fixed. For simple classical Hamil-
tonians with few degrees of freedom and underlying
correlations as superpositions of terms purely oscillating
in time, the leading-order corrections to adiabatic invari-
ants exhibit an exponentially fast decay to zero of type
O (e ~¢/¢),c >0 in the adiabatic limit e—0 [1]. For dissi-
pative classical Hamiltonians with underlying correla-
tions decaying to zero at asymptotically large times, an
attempt to account systematically for corrections to adia-
batic trajectories in lower orders of € has been made gen-
erally in the ensemble format within the so-called
multiple-time-scale (MTS) method (see, e.g., [3]), applied
first by Ott [2] and developed subsequently by many au-
thors [4-7] up to an elegant form [8] which resolves a
technical discrepancy of the different approaches. The
final result is rather surprising and predicts, under certain
consistency requirements, the leading order correction to
adiabatic invariants to be of the form O(e). This indi-
cates an unexpected relevance of corrections to the ideal
adiabaticity for such systems, and modifies our tradition-
al point of view to the subject. The present work deals
with the latter class of adiabatic processes, and since the
MTS approach is our main reference we will recapitulate
it briefly.

The MTS perturbation analysis [3] is a method for
solving ordinary differential equations, time dependent by
virtue of a small parameter, as a perturbative series in
this parameter. Its essential feature is the extension of
the number of independent time variables—a well-
behaved solution of physical interest is then determined
uniquely by removing, order by order in the perturbation
parameter, any time secularities. In particular, for an en-
semble of adiabatic Hamiltonians H(z,t)=h(z,7), the
phase space density at time ¢ of O (e7') is written in the
familiar two-time form p(¢,7) [2,4~8], so that the dynam-
ical Liouville equation dp/dt+ {p,h(7)} =0 appears in-
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stead as

—a%+e—g—+{p,h('r)} =

If p is expanded in € as

(1.1)

plt,T)=po(T)+ep(t,7)+€Epyt,T)+ - -+, (1.2)

and (1.1) is regarded as an identity in €, we then have

{po(7T),h(7)}=0 (1.3a)
d d
Epl(t,r)-l—{pl(t,r),h(f)}=—Ep0(7') , (1.3b)
ip (t,7)+{p,(t,7) h('r)}=~—a-p (t,7) (1.3¢)
at PARE] 2\ 6 ’ aT 1V6s ’ .

and so on, to which one can append the initial condition
p(0,0)=p,, expanded as

po(0)=py , p1(0,0)=0, p,(0,0)=0, (1.4)

The first major assumption is that k() is ergodic, so
that, at fixed 7, it is the only regular constant of the
motion. The first equation (1.3a) then tells us that

polT)=Ffolh(7),7)

for some function f,, and the first of (1.4) that the
decomposition is consistent only if the initial p, is a func-
tion of A(0),

po=f0(h(0),0) .

The explicit form of f follows from the requirement that
all terms in the next-order relation (1.3b), which grow
secularly with time, must be removed:

folE,7)=8(Q(E,T)),

(1.5)

(1.6)

(1.7)
where

QUE,7)= [ dz6(E—h(z,7)) (1.8)

[6(x) stands for the unit step function] is the volume in
phase space enclosed by the energy shell E of 4(z,7), and
the function g is given by the initial condition (1.6),

So(E,0)=g(Q(E,0)) . (1.9)

In this paper, we will concentrate on the special case in
which the initial phase space density p is distributed uni-
formly over a single energy shell, and hence

folE,0)=8(E —E,;)/=(E,0), (1.10a)
with the normalization constant

S(E,0)= [dz8(E—h(z,0)) . (1.10b)
The solution of (1.7)-(1.9) then reads

folE,7)=8(E—&(7))/2Z(E,T), (1.11a)

S(E,7)= [dz8(E—h(z,7), (1.11b)

where &(7) is given by
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QE(7), T)=Q(E,0) , (1.12)

i.e., the system ensemble remains distributed over the sin-
gle energy shell &(7), evolving in accordance with the
adiabatic invariance of the volume in phase space en-
closed by the instantaneous energy shell.

In a higher order of the decomposition scheme, the for-
mal solution of (1.3b) for p(¢,7) can be written in the
form [8]

9o

__9%o t,,|0h _
pi(z,t,7)= aE(h,T)fodt 5 (Zm)—u(h,7)

+ £y (7). (1.13)

Here, Z=2Z(z,t,t',7) is the point in phase space reached
by starting at z at time ¢ and then evolving a trajectory
backward in time to t', under the frozen (i.e., time-
independent or, equivalently, with 7 fixed) Hamiltonian
h(T),

u(E,7)=(dh /3T g, ,
where

(1.14)

-1 —
( )E,T—-E(E’T)deS(E h(z,7))( -+ )

denotes the phase space average over the energy shell E
of h(z,7), and f, is arbitrary apart from initial conditions
f1(E,00=0. The removal of secularities at O(e?), Eq.
(1.3c), then specifies f(E,7) via the partial differential
equation

1 0 fo | _
2f1)+ uEfl) > 3E 3G, —= 3E =0. (1.15)
Here
GyEn=[""dsc(s), (1.16)
and C (E,t;s) is an autocorrelation function
_([an_ o _
C(s)—<‘aq_ u |OLs) 3, Y )E,T, (1.17)

where O,(s) stands for a time evolution operator, evolv-
ing point z for a time s under the frozen Hamiltonian
h(7). The vanishing of C(s) for asymptotically large
time s (an inherent property of real physical systems with
energy dissipation) and the convergence of integral G,
are further major assumptions ensuring the consistency
of the two-time-scale scheme. For the ensemble of in-
terest, with initial phase space density distributed uni-
formly over a single energy shell [(1.10a) and (1.10b)] and
the corresponding pure adiabatic solution [(1.11) and
(1.12)], the extent of the violation of the adiabatic Q in-
variance when the slowness parameter € is finite is usually
measured by the energy moments

M, ()= [dzp(z,t,")[h(z,7)—E(T)]" (1.18)

which are also adiabatic invariants equal to zero in the
limit e—0. It can be shown [8] that in expansion of the
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total p up to the first order in €, only term €f,(h,7) con-
tributes to the integrals (1.18) in such a way that the first
two moments M,; and M, scale like € while all higher-

order moments M, scale like ev”(v,, 22) for t of order
Oo(e™ .

The leading e-order structure of the moments { M, (¢)}
is the most important finding of the MTS. The result
M, M, ~ € shows that the adiabatic invariants are violat-
ed substantially when € is finite and, after some algebra,
implies an evolution equation of the Fokker-Planck type
for the distribution of energies, widely discussed in the
literature [6—8]. The main aim of this work is to check,
by solving exactly a family of adiabatic time-dependent
Hamiltonians fulfilling all consistency requirements of
the MTS scheme, whether the MTS prediction as to the
leading-order € correction to the adiabatic invariants
{M, (1)} is correct. The motivation comes from the fact
that the MTS decomposition, with a partially analytical
structure assumed ad hoc, lacks the control over contri-
butions produced by higher-order terms of the formal €
expansion: their resummation can modify fundamentally
the analytic form of the leading-order € term, or at least
change its proportionality prefactor. Under such cir-
cumstances, exactly solvable situations serve us as bench-
marks for analytic developments, but these are few and
far between. In this paper, we recall such a system of an-
cient vintage, show that it generalizes quite easily to
many-particle systems, and apply this to an adiabatic
change of the coupling of a simple but in many ways non-
trivial system. This will allow us to point out potential
difficulties in current treatments of adiabatic processes.
In particular, we find that the MTS result is correct only
in the marginal limit 7—0. In the slow-time-scale region
of physical interest 7 finite, the leading-order terms of the
€ expansion of the adiabatic invariants scale like €, as pre-
dicted by the MTS method, but the proportionality pre-
factors are renormalized with respect to their MTS esti-
mates. That is, while the MTS theory implies that
M,,M,~e€ and all higher-order moments M, scale like

e (v, Z2), the exact result reveals that ¢/l moments are
of order O(e): they couple successively into pairs
{M,, _,M,,} according to the prefactors of the same
slow-time-scale order O (7" ~!). The hierarchical struc-
ture of the energy moments observed is suggested to be a
more general feature of adiabatic processes.

The paper is organized as follows. In Sec. II, we intro-
duce both quantum and classical versions of the Hamil-
tonian with a specific type of adiabatic time dependence,

Pl _1

H(z0)= 2 5+ 7557

(1.19)

X
Vitaer
Using explicit unitary (or canonical) time-dependent
transformations of dynamical variables we show that, for
an arbitrary interparticle potential v, the time evolution
of the corresponding phase space density p is expressible
in terms of p, associated with a stationary Hamiltonian

Ho(z)=2j(pj2~62xj2)/2+v({xj} ).
In Sec. III, we apply this mapping to a one-
dimensional (1D) system of harmonic oscillators with

J

coupling decaying in time,

2 N

j=o0

N p?
H(z,t)= 3 %’+%

ji=0

A

)2
1+2et

’

(1.20)

where xy . =x, is assumed. The system can be inter-
preted as a set of particles {j}, coupled consecutively ac-
cording to their indices by harmonic strings (with the last
Nth particle coupled to the zeroth one). The particle
coordinates {x;} range from — o to o, and they can
cross with each other. The Hamiltonian (1.20) is invari-
ant with respect to the uniform shift in particle coordi-
nates x; —X; +const., which implies, within the normal-
mode analysis, the existence of a zero-frequency mode
with the associated momentum as a constant of motion.
To ensure the ergodicity, we project out the zero-
frequency momentum by choosing suitable initial condi-
tions and solve exactly for the evolution of the phase
space density with the aid of the formalism of Sec. II.

In the mostly technical Sec. IV, we use this exact solu-
tion to compute a generating function for the energy mo-
ments (1.18). We concentrate especially on the limit of
infinite number of particles N — o because, as is known
in lattice dynamics (see, e.g., [9]), only in this limit can
the system fall into the category of interest treatable by
the MTS method [i.e., time correlations of dynamical
variables induced by the adiabatic Hamiltonian (1.20)
frozen at given 7=et decay to zero at asymptotically
large time]. The exact solution for the moment generat-
ing function is found in an implicit form.

In the concluding Sec. V, we determine the leading or-
der of the true € expansion of the energy moments. The
result reveals an interesting hierarchical structure for the
moments. Comparison with the prediction of the MTS is
made, and the observed similarities and discrepancies are
discussed.

II. SOLVABLE FAMILY OF ADIABATIC
HAMILTONIANS

If one consults tables of solvable ordinary differential
equations generalizing nontrivial ones of Newtonian type
to time-dependent forces, one of rather general form
(Kamke [10]) stands out. This is

X=t32f(xt717?) (2.1)

for arbitrary f, which yields to an energylike integral for
the combination xz ~!/2. The scaling form of this equa-
tion suggests that its solvability is not restricted to one
degree of freedom. Indeed, it is one of a vast array of
solvable time-dependent systems produced by time-
dependent canonical (unitary) transformations. For our
present purposes, the obvious scaling extensions of (2.1)
will suffice. They relate solvable dynamics for time-
independent Hamiltonians to those with model time
dependence; the former is implicitly solvable for one de-
gree of freedom, but only in special cases for a many-
body system.

There is no difficulty in extending dynamics to statisti-
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cal dynamics, and we shall do so. We presuppose the
solvable system

Hy=1p?+v(x)—L1e¥x?, (2.2)
where x denotes all particle coordinates and p all momen-
ta, in the sense that we are also given a density matrix
Polx,p,t) that belongs to it:

%po(x,p,tw {po(x,p: 1), Hy} =0, 2.3)
where { , ] denotes the Poisson bracket for a classical sys-
tem or (1/i#)[, ] for a quantum system. The purpose of
setting aside the term —e?x2/2 is that it cancels under
the canonical (unitary) transformation x —x,p —p —ex,
which converts (2.3) to

as
(14+2e1) oy |x,p —ex, - In(1+2et)
ot Po [ %P ’ e
+ {po x,p—ex,%ln(l-i—Zet) JH, ]=0 s (2.5)

and then follow with the time-dependent canonical trans-
formation x —x /(1+2¢€t)'?, p—p(1+2€t)!/2. Since

[3/8t —te/(1+2et){x-p+p-x, } Ip(1+2e1)2=0

and

[0/0t—Le/(142et){x-p+p-x, }1x /(1+2et)/?=0,

9
apo(x’P —ex,t)+{po(x,p —ex,t),H }=0, (2.4a) (2 .5)is transformed to
where (a b signifies scalar product) [(1+2€t)§;—%e{x-p +p-x, ] |p(x,pyt)
=1p2_€ (5. .
Hl——;-p 2(x p+p x)+tv(x) . (2.4b) +{p(x,p,t),H1(t)}=0, (2.6)
It is convenient to change the time scale, rewriting (2.4)  where {a, }b={a,b},
J
p(x,p,t)=pq x/(1+2et)1/2,p(1+2et)‘/Z—ex/(1+2et)“2,—2121n(1+2et)l ,
Hy(0=1(1+2et)p~ = (xp+px)+vlx /(1+2e1)'] ,
l
and hence to our final expression p(x,p)=f(H(0)) (2.10a)
%p(x,p,t)+{p(x,p,t),H(t)} =0, (2.7a) Or
) po(x,p,0)=Ff(L(p +ex)?+v(x))
with
H()=1p*+(1+2e) o[x /(1+2e1)1?] . (2.7b) =SHoH(e/2xptpx)tex®),  (2.100)
2 * *

€ sets the scale of the time-dependent potential in H (?),
and plays the role of the adiabatic slowness parameter.

It is the dynamics (2.7) that we want to analyze. We
must supply an initial condition p(x,p,0)=p(x,p), or, ac-
cording to (2.6),

Polx,p,0)=p(x,p +€x) (2.8)

seen as initial condition for (2.3). In general, (2.8) will
produce a transient in the development of (2.3). Howev-
er, if py(x,p,0)=f(H,), then py(x,p,t)=f(H,) as well
and a smoothly scaled behavior results: if

p(x,p,0)=f(Hy(x,p —€x)) , (2.9)
then
p(x,p,t)=f(Hy(x /(1+2et)"?,p(1+2et)!/?

—ex /(1+42€t)172)) .

Nonetheless, most studies have been with ergodic initial
condition

and so for comparison purposes, we adopt (2.10). In sym-
bolic form, from elementary mechanics, (2.10b) thus im-
plies the solution for (2.3):

polx,p,)=f

Ho(x,p)+ 3 [x(x,p,1)-pox.p,1)

+po(x,p,t)-xo(x,p, 1)1+ €x3(x,p,1) | ,

(2.11)

where the initial value x(x,p,t) satisfies an evolution
equation “backward” in time

lsf)_t_—}—{ ,Ho(x,P)} xo(x,p,t)=0 (2128)
with initial condition
xo(x,p,0)=x , (2.12b)

and similarly for p,(x,p,t). Consequently,
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p(x,p,t)=f HO(X’,p'H'%[xo(x’,p’,t’)-po(x’,p’,t’)+p0(x’,p',t')-xo(x',p',t')]+e2x%(x’,p',t')l >

with
=x/(1+2et)?,

=p(1+2et)2—ex /(1+2et)?, (2.13b)

t'=—l—ln(1+2€t) .
2e

To summarize, the phase space density p(x,p,?), asso-
ciated with the Hamiltonian H (¢) (2.7b) and fulfilling the
initial condition (2.10a), is given by (2.13), where the time
evolution of initial values of dynamical variables (x,,p,),
considered as functions of the final (x,p) and time ¢, is
determined by the stationary Hamiltonian H, (2.2) via
(2.12).

III. MODEL ADIABATIC SYSTEM
OF HARMONICAL OSCILLATORS

To document explicitly the analytical structure of an
adiabatic evolution, we will concentrate on the case (1.20)
of 1D harmonic strings. The time dependence of the cou-
pling A /(1+2e€t) in (1.20) does not prevent application of
the ordinary normal-mode technique in phase space.
That is, the canonical transformation of coordinates and
momenta

N N
a=0 j=0
N N
()= 3 A;pa(t) or p,(t)= 3 A;p;(1), (3.1b)
a=0 j=0
with
A= 1 cos 2m aj | +sin 2m aj
VN +1 N+1 N+1
(3.2)

satisfying the orthonormality conditions
N N
2 Bjabra=8j T Bjaljp=8ap ,
a=0 j=0
enables one to map the original Hamiltonian (1.20) onto

the one of N +1 independent oscillators with time-
dependent frequencies

el < o, | 2
-__1 L
H=] a§0 p a§0 T52er | e (3.3a)
=2Asin |—— =0,1,...,N . .
®,=2Asin N+i%| @ 0,1, N (3.3b)

In what follows, in order to simplify the notation, we set
A=1. The corresponding equations of motion

(2.13a)

[

ax oH

ata — apa =pa s (3.43)

dp o0H @ ’

a _ —_ a

at  ox, 1+2et | @ (3.40)

result in
2
%x, @,
ar | 1+2er | Te 6.3

The zero-frequency mode w,=0, corresponding to the
center-of-mass coordinate x/ VN +1, is special from the
point of view of the adiabatic process—because p, is the
constant of motion, it breaks up the ergodicity. There-
fore, we will project it out by choosing suitable initial

conditions: we first divide the Hamiltonian H into two
parts:
_ b
H=—2—+?{(x,p,t) , (3.6a)
G 1 x 2 1 J Dq ’ 2
(x,p,t)_'z—agl a 'z—agl 1+26t xa N (3.6b)

then consider the initial condition
t=0)=f(ﬂ(x,p,0))g(xo,po) ’

with arbitrary g(x,,p,) normalized to unity, and finally
study the time evolution of

P(x0,P05X, P;

P(X’Pabt )= fdxodpoﬁ(xo,po;x,p;t)

associated with the Hamiltonian #£(x,p,?) and subject to
the initial condition

N
S (pi+wix2)/2 3.7)

a=1

p(x,p,0)=f

The stationary Hamiltonian %, associated with #
(3.6b) in the sense explained in Sec. II, reads
N
Fo(x,p)=1 2 pi+L S (02—€*)x2 (3.8)
a=1
The corresponding set of independent harmonic oscilla-
tors splits into two subsets: those with w,<e exhibit
imaginary frequencies and the initial ¢t =0 values of
canonical variables {x.,,p,0} are given as functions of
{Xq:Past} bY

X0 =Xg cosh(t\/ez—a),zz)
smh(t\/e - 2y, (3.9a)
\/e —w?
Poo =P cosh(tV & —a? —mf,)
—x,V e€—awlsinh(tV €—o?) , (3.9b)
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while those characterized by w, > € and ordinary real fre-

quencies yield

X0 =Xg cos(t\/wg—ez)

sm(t\/co —e?), (3.10a)
\/m —€?
Po0=Pa cos(t\/wa—ez)
+x,V wi—€*sin(tV wi—€?) (3.10b)

Using formulas (2.13a) and (2.13b), the resulting phase
space density then takes the form

N
px,p,t)=f |3 [Aa(t)xf,+Ba(t)p§+Ca(t)xapa] ,
=1
(3.11)
where
2 2esinh¢, coshe,,
A ()= = f‘_’_ s
2(1+42et) Ve—o?
2€?sinh?
2esibide || (3.12a)
€ —owy
2esinhd, coshg, 2€’sinh’¢,
B, ()= 1+22a — ‘ta : 2 : 2¢ ’
Vie —wj, €T,
(3.12b)
2ew? sinh?¢,
Ca(t):-‘—e_—z“:wlzz— s (3.12¢)
2_
do= \/ ln(1+2€t) (3.124)
forma<e, and
A0 w? 2esing, cosp, 2€sin’p,
a t = T 13
2(1+2er) Vot —e wi—€
(3.13a)
14 2et 2esing,cosp, 2€sin’d,
B, ()= - — SR )
2 \/mi—ez 0, —€
- (3.13b)
2ew, sin“g,,
Ca(t)=—T§——E—2__ . (3.13¢)
Vol—é
¢G=Tln(l+2et) (3.13d)

for w,= €. Note that coefficients 4,, B,, and C, are
constrained by a useful algebraic relation

A (1)B(t)—CL(t) =} (3.14)

For the case of interest in which the system ensemble
at initial time is distributed uniformly over a single ener-

gy shell, rescaled by N in order to adapt the formalism to
the thermodynamic limit, we have

fE)= E(E )S(NEO E). (3.15)
The normalization constant
N
S(Ey)= f[[ dx,dp,8 |NEy— S (p2+awix2)/2
a=1
(3.16)
is obtained, after some algebra, in the form
QmNNE N !
UE) ) =——F (3.16")
(N—1) ] o,
a=1
Finally, the phase space density reads
N
Pt)= - ; ;
p(x,p,t) 2(E0)8 NE, DEI [A,(t)x+B,(t)ps
+C (xp,]1|, (3.17)

where the normalization constant is found to be time in-
dependent.

IV. ANALYTICAL STRUCTURE
OF CORRECTIONS TO THE IDEAL ADIABATICITY

For et =7 fixed and in the limit €e—0, (3.17) reduces to

polX,p,t)= Z(Eo 8(NE0—(1+27)h(x p,7), (4.1a)
where
h( =1 S 241 S Oa 2 2 (4.1b)
%P7 7a§lf’a z § 1427 | *@ '

is the “adiabatic transcription” of our Hamiltonian
(3.6b). This agrees with the general formula (1.11a) and
(1.11b) and, since Q(NE, 7)~(NE)N(1+27)", with the
prescription (1.12) for calculating the slow-time-scale
dependence of the single energy shell &(7)=NE,/
(1427) over which the system ensemble is distributed
under ideal adiabaticity conditions. It also agrees with
the well-known adiabatic invariance of the action vari-
ables. The counterparts of energy moments (1.18),
measuring the adiabatic invariance of 0 when ¢ is finite,
read

NE,
1+271

M,,(t)=fdxdpp(x,p,t) h(x,p,7)— (4.2)

(for tactical reasons, we do not rescale the expression in
square brackets by N).

To clarify the general analytical structure of the mo-
ments, we will first study in detail the lowest-order mo-
ment M ,(¢). It is readily obtained in the explicit form

NE, 1 XN

(4.3)



86 J. K. PERCUS AND L. SAMA]J 53

2 2_ 2
—£— sinh? “In(1+27) | for o, <e (4.42)
€ —w,
Vo=
5 Val—é
€ sin? “— In(1+27)| for w €. (4.4b)
2 2 a
Wy —€ 2¢

For finite N, M, is a singular function of € with a nontrivial leading term, as was expected: the time correlations of
dynamical variables corresponding to instantaneous Hamiltonian (3.6b) with e? fixed do not decay to zero at asymptoti-
cally large times, which evokes an inconsistency even on the first level of the MTS scheme. In the limit N — «, i.e., in
the regime with energy dissipation, (4.3) and (4.4) can be rewritten as

M ()= 2NEq I,+1I 4.5
1(t - 1427 ( 2 ) (4.5a)
where
arcsine !Zf _ w2 d !é’
f T/2 ll’ ’ 12 farcsine T/2 v¢ ’ (4'5b)

and v, is the continuous counterpart of v,,:

2 a2
—— sinh? Ve —sin’p In(1+27) | for ¥ <arcsine (4.6a)
€2 — siny 2e
v,= -
4 2 Vet —e?
> 25} > sin? szzj € In(1+27)| for 1> arcsine . (4.6b)
sin’yY—e

Substituting ¢ =arccosV 1— sin’y/€? in integral I, we obtain

=J7" L inn? | <% (1 +27) .7)
77/2 cos¢pV' 1+ u? cos’p 2
with u=e/ V1—é 2. Taylor expansion of the square root in powers of u? then provides a convergent series expansion of
I, around =0 and hence €=0:
_ & 271)' 2 +1 72 d? m—14 1.2 COSQ
I,= —1)'—=——=u" " h In(1+2 .
1 n§0( ) 221 fo /2 cos ¢ sin > n( T) (4.8)

The analytical properties of integral I, near €é=0 pose a more complicated problem. The substitution
x =V sin*h/e*—1 yields

_MH 7
L="A T, (4.92)
~ /1 dx . X
I(u)= — = gin? | = In(1+27) .
2= [ i | T (4.9b)

To deduce the value of hmu_,OIZ(p) let us first split the mtegral f VI into two parts / Wy f Ve =TV +T% where
0<8<1. The lower and upper bounds of the first integral part I’ are given by

1/p® dx 2| X < F() < 1 1/p dx ) E‘l 1427) (4.10)
fo 7x‘/1+x2sm 21n(1+2'r) <I, (#)_\/TTMZ_“—“M fo x\/1+xzsm > n( 7). .
Since
fl/'u xdx  _ V1= 1D
V1 —u2x? u ’

the second integral part I5>’ is bounded as follows:
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172

—,2(1—8)
m I—LT min  sin? | % In(1427)
1+p pb<x<1/p 2
N 1 — 218 |12 x
<TP(uy=p®? |——E—— max  sin? | ZIn(1+27) 4.11)
1+u 1/pd<x<1/u 2
By combining (4.10) and (4.11) we see that, for 2 <8 <1, the lower and upper bounds of I,(0) coincide, and one obtains
4 _ © dx 2| X
no=[ i | FIn1+2n) (4.12)

To specify the character of higher-order terms of the u expansion, let us suppose that I,(u) is analytic around =0,
ie.,

. - ajz(/l)
L =Ty(0)+u— - “.13)
un=0
where
672(;1.)=_if1/u dx 9 |sin’[x In(1+27)/2] 4.14)
o B0 Vi—plx? Ox Vi+x? '

Using the procedure applied to the calculation of T,(0), the expression on the right-hand side of (4.14) can be shown to
include terms of the form sin[In(1+27)/2u] oscillating increasingly rapidly in the limit x—0, which is evidence of
singular behavior. We therefore conclude that the first moment exhibits a singular expansion around =0, but with the
leading term ~e€:

2NE, € /2 Q COS: Q i
M ()= — inh? In(1+427) |+ 1 1+2
1(8) 1+27 [77/2 fo cos¢ l ™ f \/__i sin’ ( ™
+ (singular € terms of order > ¢€) ’ . (4.15)
In order to reveal the analytical structure of all moments { M, (#)},°—,, we introduce the generating function
N NE,
M(y)=f aI=Il dx,dp p(x,p,t)exp 11—y |h(x,p,7)— . ) (4.16)
which produces moments according to
M,(n=(—1r XM @.17)
dy y=0
Expressing the 8 function in p [see (3.17)] via
8(x)=f_°° iiﬁexp[(zk-i-cl)x] ,
with arbitrary ¢, >0, we have
N
(N—I]] o,
M(y)=ex oy a=1
Pl1+2r | @mMVE N
o N =] 0
X f dk (lk+61 o H f f dx ,dp, exp[ —%(xa,pa)va(xa,pa)T] (4.18a)
a=1 ~%®° =%

where the 2 X2 matrix V is given by
2

va= 2Aa(lk+cl)+y Ca(lk +C1)

wa
1+27
C.lik +cy) 2B (ik +c;)+y (4.18b)
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Its determinant reads

serv = | 220 [ [isaiay ) [ Fe0+20)
V= | 1527 Ve y
where v, is defined by (4.4). Let us assume that ¢, is

sufficiently large to ensure the convergence of Gaussian
integrals in (4.18a), i.e., the real parts of the two eigenval-
ues are positive for every V,. Performing the integra-
tions over all (x,,p, ), and using the substitutions

k—I=k(1427)/y, ¢;—c,=c,(1+27)/y ,
y—oy=yE,/(1+27),
one obtains
(N—1)
NN 1(g)N -1
o dl
— 21Tl
INI 1
X , (4.20a)
a=1V (I—ilF I —il])
IE=14c,+20,£2V v, (1+v,) .

M(i)=e”y

(tI+c2)N7

(4.20b)

Without any loss of generality, we will restrict ourselves
to the case N even. Taking advantage of the symmetry in
frequencies

Vy=Un41—q (@=1,...,N/2),
and using the substitutions
l—z=(l4+c,+1)y, c,—c3=(c,+1)y,

we finally arrive at

‘(ik+c1)(1+2'r) ]
+ , (4.19)
y
|
=25[v, 2V v (1+v,)] . (4.21b)

For the case of interest, N— o, (4.21) can be rewritten
as follows:

oy (N=D pesti= dg
M(y)——E—N—:rsz_m 5ﬂ—exp[N<I> z)], (4.22)
where
q>(2)=z_%fov/2ﬂi./%1n[(z+z$ Nz+z;)], (4.23a)

z;—f =2J7[v¢:|:\/v¢(1+v¢)] ,

and vy is given by (4.6). Let z* be the extreme point of
®(z): 3®(z)/3z| __»=0 or, more explicitly,

(4.23b)

/2 dy 1 1
1—1f7 + =0. (4.24)
2fo m/2 | z*+zy  z*+zy
Since 8°®(z)/3z>>0 everywhere, z* is the only
minimum point of ®(z). Let us choose c;=z*. Conse-

quently, along the integration path in (4.22), ®(z) attains

its maximum at z =z*, and in the limit N — o« we find
M(y)~exp{N[®(z*)—1]} . (4.25)

This relation, together with the definition of ®(z),zy
(4.23) and the implicit equation for z* (4.24), represent a

M(5)= (N—1) f03+"°° dz szf/f 1 closed-form solution for the generating function of mo-

YImTNNT Jey—ie 2 J P N ments. .
It is simple to deduce systematically from Eq. (4.24)

(4.21a)  the y expansion of z* around y =0,

J
2Eqy a2 2Eyy /2 /2
() — 3& _ ay 3

2*=1—7>— [ 77/2 vt | Toor | | [ mgoeit )= | [T, | [ +00Y) (4.26)

The moments, generated according to (4.17), are then available explicitly:

reproduced,
2
2E,
My(0= | {N(N—l) I,
and so on.

+Nf”/2—¢—v,,,(1+2v,,,)

in the lowest n =1 order M (¢t), (4.5) is

s (4.27)

As has been indicated above, our primary interest is directed toward the calculation of the leading term of the mo-
ment (generating function) expansion in the slowness parameter €. To simplify the notation, we set E, /(1+27) equal to
unity —this combination enters into the expression for M, only in the nth power as the proportionality prefactor. Let
us rewrite (4.23) as
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P(z)=z—Inz—1(I,+1,), (4.28)
where
1= fo““i“‘;% In[1+4yz " (1—yz ", 1, (4.292)
L= :c/:ne% In[1+4yz" (1 —yz" oy ] - (4.29b)

Using the analysis of the analytical structure of integrals I,,I, around =0 analogous to that presented previously for
M (1), it is easy to show that

€ 4yz '(1—yz~") . 5| cosd
I~ In{1+ h + , 4.30
1~ [ décoss n{ oty S| T In(1427) (4.30a)
€ © dxx 4z M1—yz™Y) . ,|x
~ 2P sin? |2 : 4,
I, /240 mln [1+ 2 sin 2ln(1+27') (4.30b)
Since z* ~ 1 in the limit e—0, and z* — Inz* =1+ 0(€?), we finally obtain
M(y)~1——N—e[f””d¢cos¢1n{1+4y(1—y) 12 sinh? | 2% In(1+27) l
T 0 cos 2
+f°°d"—x1n 1+4y(1—y)—= sin? | Zin(1+27)
0 Vitx? x? 2
+(singular € terms of order>¢€) . 4.31)

V. COMPARISON WITH THE MTS APPROACH AND DISCUSSION

Let us now study the propagation of the microcanonical ensemble governed by our adiabatic Hamiltonian (4.1b),
within the MTS method explained in Sec. I. The adiabatic normalization constant (1.11b) and the auxiliary quantity
u(E,7), defined by (1.14), are readily obtained in the form

N
2(B,n=—- T ENTI142r)Y (5.1)
(N—I]] o,
a=1
2E
=_ . 5.2
u(E,7) T4ar (5.2)
Since
8h _ _ 2E N 200x
ar 1+27 2, (1427’
3h 2E N 20 og5 | P s ||
——ul= - = + == (14+27)si ,
Ods) [ar “1=Tr2r 2 g2 2% 172 | T, 125 1527
[
then after some algebra, the autocorrelation function Cls)= 2E 1 7 2s (5.4)
(1.17) becomes 1427 | N+17° | 1427 | '
2E 1 N 20,8 where
C(s)= >, cos . (5.3) v dY ns rdy
1+27 | (N+1)N 2| 1+27r J0(2)=f etzsm111=f cos(z siny) (5.5)
—7 2T o

For finite N, C(s) is a superposition of oscillating terms
which does not tend to zero for asymptotically large s.
On the other hand, in the limit N — « we have

is the ordinary Bessel function. Owing to f o dzJo(z)=1

[11], the key correlation integral (1.16) converges as is
needed,
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4E? 1
1427 N+1 °

G,(E,7)= (5.6)

As concerns the components of the € expansion (1.2) of
the phase space density p, the lowest-order p, has already
been obtained in (4.1a) and, with respect to (1.5), one has

N
(N—l)‘]'[ca

SolE,7)= —8(NE,—(1+27)E) . (5.7)

(277)N(NE )

The unknown part of p; (1.13), f, satisfies a PDE of type
(1.15), which is written, after the substitution

J

N
(N—1) H o,
E,r1)=——F——7—f,(E, .
Sl T )N(NEO)N ~Fi(E,T), (5.8)
as follows:
af af1
(1427 )_-_ZE_E
— 2 2 2Qn _
N+1E (1+27)°8"(NEy—(1+27)E)
—2E(1+27)8'(NE;—(1+27)E) . (5.9)

This PDE can be solved by using the method of charac-
teristics:

F1(E,7)=In(1+27) [ N}H E*(1427)%8"(NEy—(1+27)E)—E(1+27)8'(NEy—(1+27)E) ’ , (5.10
so that
N
(V= DL 1 2 [[Ea+2n |
a=1 T
Er)=———"——In(1+2 8(NE,—(1+27)E
f1(E,7) QN (NE;) n( T) N+10E2 N (NE,—( ) )]
_ag ' E“;zf) S(NEO—(1+2T)E)H. (5.11)
0

As explained in Sec. I, the term €f(A,7) in p is the only one which contributes to the generating function of mo-

ments {M,(2)}:

N.

M(y)—1+efdzf1(h,r)exp [y 1+2 —h(z,7) } £ -5,

€ln(1+27) 1 3 N+1 yN

=1+
TRy | N1 e |E° exP | 747 Fo~ o)
3 yN
aE EY exp 1427 (E, EO)]} Eomr, (5.12)
[
Finally, in units of E,/(1+27)=1, we find the relation Mip=1_ 2Ne [ 3 lyz,,_l_ % S

M(y)=1—Ney(1—y)n(1+27) (5.13) T |n=1

possessing the symmetry y — 1 —y of the exact leading or-
der of the generating function (4.31). Only the first two
moments are nonzero in the leading € order,

M,=Neln(1+27),
M,=2Neln(1+27) ,

(5.14a)
(5.14b)

as generally holds with the MTS method.

To make contact with the exact result, let us expand
M(y), (4.31) for a given power of y, in In(1+27), and
consider the leading-order term (obviously analogous to
the leading-order term of the 7 expansion):

X[In(14+27)]2" !

sin®"x

X fow dx —

+} (5.15)
x

Note that only the second integral in (4.31) contributes to
(5.15), and that the expansion in In(1+27) is singular.
Form (5.15), one finds



53 ADIABATIC PROPAGATION OF DISTRIBUTIONS: EXACTLY ... 91

M,,_=Ne [(Zn —1)![1n(1+27')]2”_1%

w . sin®"x
X [ax =g ] (5.162)
M,,=Ne l2(2n —1)![1n(1+27.)]2n—1%
© 120
xfo dx ST } (5.16b)
X

for n=1,2,.... Taking into account the equality
f8°dx sin?x /x?*=1/2 and comparing (5.16a) and (5.16b)
for n =1 with (5.14a) and (5.14b), we observe that the
MTS scheme at the assumed level produces the exact re-
sult in the leading order of In(1+27), i.e., its validity (in
the leading order of ¢) is restricted to very small values of
slow time scale 7. As 7 increase, higher moments become
relevant: they constitute an interesting hierarchy of pairs
{M,, _,M,,} with prefactors to € of the same order
o).

In conclusion, expansions in € of the energy moments
{M,(t)} (1.81), which measure the deviation from the
ideal adiabaticity, exhibits, for our exactly solvable exam-
ple of adiabatic evolution, the leading-order terms ~ € as
predicted by the MTS method; i.e., possible resumma-
tions of higher-order singular terms have no fundamental
effects. On the other hand, the proportionality factor of
the leading-order terms is renormalized with respect to
the MTS estimate. While the MTS theory based on the
decoupling of the formal expansions (1.2)
p(t,7)=py(T)+€p,(t,7) implies that M ,M,~e€ and all
higher-order moments M, scale like e (v, Z22), the ex-
act result reveals that all moments are of order O(e):

they couple into pairs {M,, _,,M,,} with the prefactors
of the same slow-time-scale order O(72" 1), and the MTS
method is adequate only in the marginal limit 7—0. The
MTS theory with p,(¢,7) included picks out the lowest
couple of the hierarchy, {M,M,}, of the order O(7) for
h(z,7) analytic at 7=0, as can be shown from (1.15) with
initial condition f;(E,0)=0, for an arbitrary ergodic adi-
abatic evolution which satisfies consistency requirements.
We therefore suggest that the hierarchical structure of
the moments observed here is a more general feature of
adiabatic processes. The failure of the MTS approach to
predict correctly the prefactor of the leading € term is in-
tuitively connected with an inconsistency on a higher lev-
el of the scheme.

We do not consider our solvable model to be exception-
al, and expect similar phenomena for a large class of sys-
tems. It must be stressed that this class is characterized
by the decay of transients (physically, because their ener-
gy is sent out to infinity), and so it is only the slowly vary-
ing component, mirroring the applied adiabatic forces,
that remains to be analyzed in detail. The reader can
readily verify that if we were to have used only a finite set
of oscillators, there would have remained as well a
quasisinusoidal variation which induces a completely
different type of correction term. In any case, the
worked-out example shows that the MTS method has to
be developed further in higher orders to obtain relevant
information abut the character of nonanalyticity around
€=0 as well as possible additional more strict consistency
requirements. The practical relaxation of such a program
is, however, far from simple.
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